Math 656 « FINAL EXAM ¢ May 13, 2014

1) (8pts) Find all values of tanh™!(i).
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2) (12pts) Categorize all singularities of the following functions. Examine also a possible singularity at z=oo
(hint: substitute ¢ =1/ ). Make sure to explain briefly.

z=0: Branch point

1/4
(@ f(2)=—3; 1‘ =— 5 Z = o0 : Branch point / cluster point
z"*sinz  sin(1/¢) ,
z=rnk,k eZ, k #0: Simple zeros

(b) f(2)= L(Z): exp(z —lj: exp 1 ¢ | Essential singularityatz =0 and atZ = o
exp(1/2) z ¢

Z=0: Cluster point
(c) f(2) sin(7z)  sin(z/¢) |z=oo: Essential singularity
c _ _

sin’(7/2z) sin®(#$) |z ==l Simple poles

Z:&,keZ,|k|22:Polesoforder2

cos(logp (Z)) -1
sin 'z
Hint: a shift z =1+ ¢ may help. What would be the radius of convergence of the full series around z=1?

3) (12pts) Find the first two dominant terms in the series expansion of f(z) = around z = 1.
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= f(2)= i[(z -1)—(z- 1)2 + O((Z - 1)3 )} Convergence radius = distance to singularity =1: |z-1|<1



4) (16pts) Calculate the following integrals, picking the most efficient method for each. Contours are circles
of given radius:
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Note: without the mapping the solution is longer: =27i | Res(—1)+Res(+1)+  Res(0) =0
| R NS — —
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5) (16pts) Calculate the following two integrals. Carefully explain each step, and make sure to obtain a real

answer.
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Note that along the bottom of the branch cut z = re'*” = 7" =—r

cdr dr
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Take the limit ¢ > 0, R —> oo:

+00 3
by 1= j —— Integrate around appropriate circular sector ("wedge") containing only one pole
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6) (12pts) Use Rouche’s Theorem to find the number of zeros of f (z) = 4z*+ 13z*+ 3 belonging to the
following domains: (a) 2| < 1; (b) |z] <2; (c) 1 <|z| <2

* Two roots inside |z| < 1:

Consider f (z) = 13z? (which has two roots inside |z|=1) and g(z) = 4z*+3
On the circle |z|=1 we have | g |<4|z* [+3=7 = |g|<|f|=13]z[=13

* All four roots inside |z|<2:

Consider f (z) = 4z* (which has 4 roots inside |z|=2) and g(z) = 3 + 132’
On the circle |z|=2 we have | g | <3 +13|z|°=3+52=55 = |g|<|f|=4-2"=64

* Therefore, there are 4-2=2 roots in the ring (annulus) 1<|z|<2

Do two of the last four problems:

7) (12pts) Use the Argument Principle to find the number of roots of f (z) = 2i — z + z> + Z* lying in the first
quadrant. To do this, sketch the mapping of the relevant quarter-circle (it’s quite straightforward).

No roots:
Winding number = 0

* Mapping of positive real axis: f(z)=-x+x*+x’+2i = v=2=const = horizontal line v=2

u \

* Mapping of quarter-circle:
R—>wo = f([Re”)~([Re"”) =R, [0, 7/2) = Approaches 3/4 of a circle as R — o

» Mapping of the imaginary axis, z=iy where y>0 (the only non-trivial and crucial part):

f(z:iy):;)ﬁ+i(2—y—y3)
—

v=1Im f (z =iy) monotonically decreasing (curve bends downward as y — o) o
=> curve bends away from origin

u=Re f (z=iy) also monotonically decreasing (bends to the left as y — o)



8) (12pts) Suppose f(2) is an entire function, satisfying inequality | f (z)| <a + |z| everywhere in the complex
plane (here a > 0 is a real constant). Prove that f(z) is a polynomial. Hint: recall the proof of the Liouville’s
Theorem using the extended version of Cauchy Integral Formula.

Apply Cauchy Integral Formula to the (k+1)st derivative, and take a circle as the contour; since the function
is entire, we can increase the circle size to infinity:
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Thus, all derivatives of order k+1 and higher are zero, which means that the Taylor series has finitely many
terms = it’s a polynomial

9) (12pts) Indicate domains of convergence of each series:

=, exp(22k) (2z)
Z ’ z [expk' ] = exp(exp(2z)) Converges in entire C| (Also follows from the ratio test)
k=0 .

k=0

Z( )exp Z( >[elo )] ~log(1-¢")

(You can also use the ratio test) Converges wherever [e”* |=e* <1 = x>0 = |Right half—plane|

10) (12pts) Consider the map w=1z + l Describe the images of the following sets under this map: (a) unit
z

circle |z|=1, (b) circle of radius 2, |z|=2. (¢) exterior of the unit disk, |z]>1. Hint: examine Cartesian
components of the image, W=u+1ivV

o i 1 i i -
(a) Unitcirlce: z=€Y =>w=z+=—=¢"" +e"'? =2cos@ < |Segment of real axis, X € [-2, 2]
z

2 2
(b) Circle |z]=2: z=26" = w=2e" ile Z 20050 4i3sing < Equation of ellipse R V(U A
2 2 2 5/2 3/2

(c) This mapping is conformal on C\{0,c0} = Interiors map to interiors, boundaries map to boundaries

= Both interior and exterior of unit circle map to the entire C excluding segment of real axis with Rez €[-2, 2]

(The only domain that has a boundary which is a line segment is the entire C plane lying ouside of this line segment)



